
Intelligent Visual Reasoning Tutor

Eric Wang
wang@me.skku.ac.kr

Yong Se Kim
yskim@skku.edu

Creative Design and Intelligent Tutoring Systems Research Center

Sungkyunkwan University, Suwon, Korea

Abstract

Visual reasoning is an essential skill for many

disciplines in engineering and architecture. We
describe an intelligent tutoring system for visual
reasoning that uses the missing view problem, a
learning contents model based on skills, lessons, and
problems, and a learner model that measures domain
competence as a set of skills. Learning contents and
pedagogical teaching strategy are stored in ontologies,
which can be customized by the teacher.

1. Introduction

The ability to visualize and reason about geometric
aspects of 3D objects is critical for success in
engineering activities. Visual reasoning capability is
becoming more significant as the functionality and the
usage of computer-aided engineering systems
increases, especially since 3D objects must be
understood in the 2D space of the computer screen.
Yet the instruction of visual and spatial reasoning
skills presents challenges for traditional classroom
instruction methods. There is an emerging need for
intelligent instructional tools that can assist learners in
the development of these skills.

We describe the development of the Intelligent
Visual Reasoning Tutor (IVRT), an intelligent tutoring
system for visual reasoning that can adaptively support
different learners’ needs, track learners’ progress, and
provide active critiquing. IVRT provides a learning
system with which a learner can develop visualization
and spatial reasoning capabilities in a self-paced series
of exercises. IVRT is targeted toward freshmen
undergraduate students in all engineering disciplines,
to supplement a one-semester course.

The Intelligent Visual Reasoning Tutor uses the
missing view problem, in which two consistent,

principal orthographic projections are given, and the
objective is to provide the third orthographic
projection such that the three views correspond to a
valid 3-D solid object [1]. An example of a missing
view problem is shown in Figure 1. This type of
problem requires the application of visual analysis and
visual synthesis [2], which builds the foundations of
the visual reasoning processes.

Top View

Front View Side View

Solid (pictorial view)

?

?

Figure 1. Example of a missing view problem

2. Visual Reasoning Tutor

We have previously developed an instructional
software system called Visual Reasoning Tutor (VRT)
[3][4]. Two main components of the VRT system
have been integrated into the current IVRT system: the
Visual Sweeper module, which provides geometric and
graphics operations for constructing solid objects from
orthographic projections, and the Visual Teacher
module, which provides adaptive evaluation and
critiquing. These components are shown in Figure 2,
running in embedded mode within the current IVRT
system.

mailto:wang@me.skku.ac.kr
mailto:yskim@skku.edu

(a) Visual Sweeper command menus

(b) Teacher and Solution windows

Figure 2. Visual Sweeper and Visual Teacher
modules

2.1 Visual Sweeper

The Visual Sweeper, shown in the large window on
the right in Figure 2(a,b), provides interactive
sweeping operations [5], which are the inverse
operation of orthographic projection as applied to each
face. Sweeping operations are an intuitive, visually-
oriented operation to construct 3D solids from
orthographic projections. The learner selects a
sequence of edges in one orthographic view to form a
loop. The Visual Sweeper constructs a 2D face whose
boundary is this loop, then allows it to be swept in 3D
space by dragging the mouse, such that the projection
of the swept face is always consistent with its
originating orthographic view. Then by visually
analyzing the projection of the swept face in the other
orthographic view, the learner interactively positions
the swept face to satisfy both views. In this way, the

learner incrementally constructs a solution solid
through a sequence of sweeping operations.

Variations of the sweeping operation include face
sweep, in which all vertices are swept; edge sweep,
where one specified vertex remains fixed, and one
specified edge is swept (which implies that the face
“stretches” as necessary to remain consistent with the
originating view), and vertex sweep, in which one
specified edge remains fixed, and a specified vertex is
translated. The edge and vertex sweep operations
allow the construction of slanted faces that are not
orthogonal to either orthographic view.

2.2 Visual Teacher

The Visual Teacher module captures and critiques
the learner’s reasoning. It incorporates problem
solving knowledge for missing view visual reasoning
as a set of CLIPS rules [6]. It provides the following
services: evaluation of a partial solution solid, hinting
for the next face to be manipulated, display of the
solution solid, and calculation of the learner’s score, on
a 100-point scale.

- The Teacher window, shown in the upper left of
Figure 2(b), provides on-demand evaluation of a
learner’s solution solid, by color-coding all faces of
the learner’s solution as correct (green), partially
correct (yellow), or incorrect (orange). A partially
correct face is one that is not correct yet, but could
be made correct with additional operations.

- The Teacher window can also display a hint for the

next face to be created, by showing that face in
blue color. However, as students have shown a
tendency to overuse this mechanism, it is now
password-protected.

- The Solution window, shown in the lower left of

Figure 2(b), displays the solution solid. A given
missing view problem may have multiple valid 3D
solution solids. For each problem, we pre-compute
all possible solution solids, and store these as part
of the problem data. At run-time, the Teacher
automatically determines the solution solid that is
closest to the learner’s current solid.

- The Teacher calculates the learner’s score for a

problem from the ratio of correct faces to all faces
of the closest solution solid, and from penalties
incurred for certain commands that indicate non-
ideal solution sequences.

3. Intelligent Visual Reasoning Tutor

We have developed a successor system called
Intelligent Visual Reasoning Tutor (IVRT), which
embeds VRT within an intelligent tutoring system
framework. IVRT uses learning contents consisting of
skills, lessons, and problems, and a learner model that
records learners’ skill scores and activity history.

- A lesson is a text or multimedia resource that

teaches the core concepts for missing view visual
reasoning, including the orthographic projection of
a solid onto viewing planes, and the inverse
operation of converting the orthographic
projections back to 3-D solid faces.

- A problem is an instance of a missing view

problem, consisting of two orthogonal views. The
learner’s objective is to create a valid 3D object
that is consistent with both views, using the Visual
Sweeper module.

- A skill is a domain concept or problem-solving

process, which has been identified a priori by the
teacher or domain expert as having significant
pedagogical value, requiring explicit instruction
and measurable expertise. A set of 15 skills has
been identified for the missing view visual
reasoning domain, such as multiple loop for
properly handling orthographic views with multiple
loops, face sweep for properly applying the face
sweep command, etc.

A learner’s domain competence is measured by the

learner’s skill levels, as a set of scores in the interval
[0, 100], plus additional data reflecting the learner’s
command history within the Visual Sweeper module.
A new learner begins at 0 score in every skill. As the
learner solves problems, the learner earns skill points.
This causes more advanced lessons and problems to
become available for selection. The learner’s objective
is to increase every skill score to 100, which completes
the tutorial.

3.1 Learner’s Interface

The Learner’s Interface provides skill level display
as a set of skill bars, and interactive selection of
lessons and problems based on the learner’s current
skill levels, as shown in Figure 3.

- When the learner requests the current set of
lessons, a comprehensive list of all lessons is
presented, as shown at the bottom of Figure 3(a).
Within this list, lessons are color-coded to indicate
the learner’s mastery. Green dots indicate relevant
lessons based on the learner’s current skill scores,
gray dots indicate lessons that the learner has
already mastered, and white dots represent
advanced lessons whose requirements the learner
has not yet fulfilled. For convenience, the
comprehensive list of all lessons is always shown,
which allows learners to consult earlier lessons at
any time.

- The problem selection window, in Figure 3(b),

shows the subset of available problems based on
the learner’s current skill scores. The learner may
choose any problem within this subset, which
launches the Visual Sweeper module.

(a) Lesson selection and display

(b) Problem selection

Figure 3. Learner’s Interface with skill bars,
lesson guidance, and problem selection

4. Customization of Learning Contents

IVRT’s learning contents and learner model are
formalized as ontologies. Pedagogical teaching
strategy is represented as inference rules, which are
executed by a separate inference engine. We use
Protégé with OWL plugin for ontology editing, and
Jess [7] as the rule inferencing engine, with XSLT
conversion from OWL to Jess.

The teacher can customize the learning contents of
skills, lessons, and problems by editing the ontology
files.

- Skills comprise the link between lessons and

problems. Skills may be arranged in a hierarchy of
prerequisite skills, to impose an ordering on the
sequence of instruction.

- Each lesson is associated with the skill(s) to which

it contributes, and their eligible score ranges, which
determines whether the lesson is to be presented to
a learner. The domain expert usually defines at
least one lesson for each skill.

- Each problem is also associated with the skill(s)

that it requires, and their required score ranges and
reward values. When the learner solves a problem
successfully, the problem’s reward values for its
associated skills are added to the learner’s skill
scores.

As the learner reads lessons, solves problems, and

earns increases in skill scores, new lessons and
problems will be “activated”, while old lessons and
problems may be considered to be “mastered”, and are
suppressed. In this way, the domain expert can define
a natural order for the presentation of the course
material, while still allowing a flexible, customized
response based on each learner’s individual progress.

Additionally, the teacher can customize the
pedagogical teaching strategy, which determines the
presentation sequence of lessons and problems based
on a learner’s skill scores and other history data.
IVRT’s pedagogical strategy is implemented as a set of
inference rules, which are executed in Jess. To assist
non-programmers in writing inference rules without
requiring Jess expertise, we have developed a
prototype rule editor, shown in Figure 4, with a
simplified syntax, high-level language abstractions,
and automatic conversion to Jess. Using this interface,
the teacher can edit any of the pedagogical teaching
rules at run-time, and immediately evaluate its effects.

Figure 4. Rule editor with conversion to Jess

Figure 5. Application architecture of IVRT

5. Application Architecture of IVRT

IVRT is implemented as a set of applications, which
communicate at run-time through various mechanisms,
as shown in Figure 5.

- The Learner’s Interface is a native C++ application
for Windows. It provides text and graphics display
using standard Microsoft Foundation Classes
(MFC) controls, and animation display by invoking
the standard Windows file ‘open’ command, which
Windows automatically delegates to a separate
utility application that is associated with the
animation file’s extension type, e.g. Windows
Media Player or RealPlayer.

- The Visual Sweeper/Visual Teacher module is a

C++ application for X Windows and OpenGL. It
executes within Hummingbird Exceed, an X
Windows emulation library for Windows. The
Learner’s Interface executes the Visual Sweeper
application as a child process, passing the problem
data, and it retrieves the learner’s score and
command usage data on completion.

- Pedagogical rules that implement the pedagogical

teaching strategy are implemented in Jess, as a set

of about 20 Jess rules. On start-up, the Learner’s
Interface executes Jess within a Java VM as a child
process. Thereafter, both of these modules run
concurrently, and communicate through sockets,
using a simple text protocol. The socket-based
communication is inherently asynchronous (non-
blocking), so a synchronous version has been
developed on top of it. This allows the Learner’s
Interface’s C++ code to abstract away the details of
communicating with the Jess rule engine, and treat
it as if it were a library of functions callable
directly from C++.

- Learners’ records are stored as XML files. When a

learner logs into IVRT, the Learner’s Interface
loads the learner’s record, displays its skill scores
in the skill bars, and also sends the learner’s skill
scores and other data to the Pedagogical Rules
module, which automatically calculates the
learner’s available lessons and problems. When
the learner requests the list of lessons (problems),
the Learner’s Interface queries the Rules module
for the current list, then displays them. Selecting a
problem causes the Visual Sweeper to be executed.
The result of the Visual Sweeper session is sent to
the Pedagogical Rules module, which updates the
learner’s skill scores, lessons, and problems, and
these are written to the learner’s XML record.

6. Conclusion and Future Work

IVRT is an intelligent tutoring system for visual
reasoning, suitable for use at the undergraduate level.
It is also a framework for studying the teacher’s
customization of learning contents and pedagogical
teaching strategy. Preliminary results indicate that
ontology-based representation and editing of learning

contents can provide rich customization capabilities.
Future work includes (1) assessing the ongoing need
for dedicated “smart” editing tools, such as the rule
editor, (2) enhanced logging of the learner’s command
history, and (3) use of data mining to identify the
learner’s preferences and learning styles.

References

[1] Wilde, D. J., “The geometry of spatial
visualization: two problems”, 8th IFTOM World
Congress, Prague, Aug. 1991.

[2] Kim, Y. S., Astley, M., Pariente, F., and Zhao, H.,
“Instructional software development for visual
reasoning: the first phase”, Proc. Int’l. Conf. on
Engineering Computer Graphics and Descriptive
Geometry, Tokyo, 1994.

[3] Kim. Y. S., Moon, C., Chauhan, S., Hubbard, C.,
Mengshoel, O., and Zhao, H., “Visual Reasoning
Tutor (VRT): Instructional Software System for
Missing View Problem”, Proc. ASEE Engineering
Design Graphics Division Conf., Ames, IA,
Nov. 1995.

[4] Hubbard, C., Mengshoel, O., Moon, C., and Kim,
Y. S., “Visual reasoning instructional software
system”, Computers and Education, Vol. 28, No.
4, pp. 237–250, 1997.

[5] Zhao, H., and Kim, Y. S., “Geometric Operations
for Visual Reasoning of a Solid from Orthographic
Projections”, Advances in Engineering Software,
Vol.30, No.7, 1999.

[6] Mengshoel, O. J., Chauhan, S., and Kim, Y. S.,
“Intelligent Critiquing and Tutoring of Spatial
Reasoning Skills”, AI in Engineering Design,
Analysis, Manufacturing, Vol.10, 1996.

[7] Friedmann-Hill, E., Jess in Action, Manning,
2003.

	Introduction
	Visual Reasoning Tutor
	Visual Sweeper
	Visual Teacher

	Intelligent Visual Reasoning Tutor
	Learner’s Interface

	Customization of Learning Contents
	Application Architecture of IVRT
	Conclusion and Future Work
	References

