
A Rule Editing Tool with Support for Non-Programmers
in an Ontology-Based Intelligent Tutoring System

Eric Wang, Sung Ah Kim, and Yong Se Kim
CREative Design & Intelligent Tutoring Systems (CREDITS) Research Center

Sungkyunkwan University
Suwon 440-746 Korea

wang@me.skku.ac.kr, sakim@skku.edu, yskim@me.skku.ac.kr

Abstract
We are developing an ontology-based intelligent
tutoring system, in which domain, pedagogical, and
tutoring knowledge is represented as ontologies.
Inference rules are a key representation of
pedagogical knowledge for automated evaluation.
However, the use of existing rule-based languages
requires programming skill. Rule editing can be
made more widely accessible to non-programmers
through the development of smarter tool support.
Through analysis of inference rules used in an
existing intelligent tutoring system, we identify
common idioms within rules that are simple to
express in natural language, but which vary widely
in their complexity of implementation in the Jess
rule language. We have developed a prototype rule
editing tool in which these idioms are provided as
keywords, with automatic translation to complete
rules, which simplifies the rule editing process.

1 Introduction
We have previously developed a multimedia application
called Visual Reasoning Tutor (VRT) [Hubbard et al.,
1996], which uses the missing view problem as a mechanism
to develop the visual reasoning abilities of design and
engineering students, as shown in Figure 1.

Figure 1. Visual Reasoning Tutor

From 2001–2003, we have developed a successor system
called Intelligent VRT (IVRT), which embeds VRT within
an intelligent tutoring system framework. IVRT uses

manually-encoded learning contents consisting of skills,
lessons, and problems, and a simple learner model that
records student skill scores and activity history.

2 Ontology-Based Intelligent Tutoring
System
Ontologies support knowledge sharing and reuse, by

both humans as well as computers [Gruber, 1993]. We have
migrated to an ontology-based approach to intelligent
tutoring systems, shown in Figure 2. Domain knowledge
(learning contents), learning process knowledge, tutoring
knowledge, and learner information are formalized as
ontologies. Pedagogical knowledge is also represented as
inference rules, which are executed at run-time by a separate
inference engine. We use the Protégé ontology editor
[Protégé, 2004] with OWL plugin, and Jess [Friedmann-
Hill, 2003] as the rule inferencing engine, with XSLT
conversion from OWL to Jess.

Tutoring Strategy
Model

Learning Contents
Model

Tutoring

Application
Shell

Learner’s skill levels
Tutoring Reasoning Engine

Learner’s actions

Learner’s history

Learning Process
Model

• Rule Inferencing
• Bayesian Inferencing
• ...

Learner Model
Learner Ontology

Learning Ontology

Tutoring Ontology

Learning Contents
Ontology

Ontology
Editor

Learner

Rule
Editor

Learning
Contents

Editor

Learning
Process
Editor

Interaction Interface

Current state

Skill assessment
New state

Figure 2. System architecture of ontology-based intelligent
tutoring system

3 Pedagogical Rules in IVRT
IVRT’s teaching strategy is to show a subset of lessons and
problems based on the learner’s current skill scores. Items
that the learner has already mastered, and items for which
the learner is not yet ready, are not shown. As the learner
solves problems satisfactorily, the learner’s skill scores

mailto:wang@me.skku.ac.kr
mailto:sakim@skku.edu
mailto:yskim@me.skku.ac.kr

increase, which causes new lessons and problems to become
visible, and previous ones to be hidden.
 This high-level strategy is implemented using inference
rules. Terms used in these rules are defined in our learning
contents ontology for the IVRT domain, as follows:
• A skill has an activeness property, which is true or

false, and zero or more required skills, arranged in a
hierarchical structure.

• A lesson or problem has one or more associated skills,
and has a visibility property, which is either true (it is
shown to the learner) or false (hidden).

• A global property of skill satisfaction is defined by a
system predicate, which takes a skill and returns true or
false. Each teacher can customize this test.

Selected rules are shown below. These rules are given in a
quasi-formal manner using natural language, which was to
ease discussion of the rules without requiring Jess expertise.

Rules to Activate Skills
1. For each skill: if it has no required skills, activate it.
2a. For each skill: if any required skill is not satisfied,

deactivate this skill.
2b. For each skill: if all required skills are satisfied, activate

this skill.

Rules to Show and Hide Lessons
3a (Default strategy) For each lesson: if all associated

skills are active, show it.
3b (Default strategy) For each lesson: if any associated

skill is inactive, hide it.
4 (Special strategy) For each lesson: if any associated

skill is active, show it.

Rules to Show and Hide Problems
5a For each problem: if all associated skills are active,

show it.
5b For each problem: if any associated skill is inactive,

hide it.

3.1 Implementation 1: Rules in Jess
A full implementation of IVRT’s strategy is straightforward
in a standard rule language such as Jess, totaling about 20
Jess rules. However, this requires a Jess programmer’s
skill. This tends to exclude any users who are not skilled
Jess programmers. We assume most teachers lack sufficient
programming skill to rely entirely on this approach.

3.2 Implementation 2: SWRL Ontology using
Protégé OWL Interface

We have modeled a subset of SWRL rule syntax [Horrocks
et al., 2004] as an OWL ontology in Protégé, by defining
SWRL terms as classes, and SWRL grammar rules as
properties of these classes. Then we were able to use
Protégé OWL’s user interface to construct instances of
SWRL rules, i.e. as a rudimentary rule editor. We
integrated this interface with Jess using XSLT conversion,
so that SWRL rule instances edited in Protégé are
immediately updated in the Jess run-time environment.

This approach was successful insofar as it gave us a rule
editing capability. However, it faced two severe drawbacks:
1. Verbosity. A SWRL rule naturally has a hierarchical

structure. To instantiate such a rule as an instance of an
ontology required instantiating every element and
subexpression separately, in a bottom-up manner. This
was a tedious process, even for trivial rules.

2. Programming skill. To create rules that would work
properly after conversion to Jess still required expertise
in Jess. Hence, we judged this approach to be no
simpler than programming in Jess directly.

4 A Rule Editing Tool with Support for Non-
Programmers

We have identified as a desideratum within our ontology-
based intelligent tutoring system environment to make rule
editing accessible to non-programmers. That is, it should
provide intelligent support to hide or reduce the complexity
of programming.

4.1 Identification of Common Idioms
We considered the actual rules used in IVRT, and also
plausible rules within a typical teaching strategy, i.e. which
could reasonably be expected to be reused by many teachers
across many domains. When these rules are written at a
fairly abstract level, using natural language, certain idioms
emerged. These idioms correspond to everyday concepts in
natural language, on which most people can agree at a non-
technical level.
 Two common idioms used throughout IVRT’s rules are
“if any” and “if all”, as highlighted in bold font in Section 3.
When implemented in Jess rules, they require substantially
different techniques, due to Jess’s own characteristics.

4.2 Mapping of Idioms to Rule Fragments
For each idiom, we define a mapping to a Jess rule
fragment, which is a portion of a Jess rule. A rule fragment
could be as simple as a single keyword1 in the language.
More generally, it consists of a block structure within a rule,
and it may introduce variables, or even multiple rules.
 We have identified the following idiom-to-fragment
mappings. For each mapping, we show the idiom in quasi-
formal natural language in italics, followed by its Jess rule
fragment. Unimportant details of Jess rule syntax are shown
in gray text.

• for each s in a set S
(defrule R1 (S ?s) => …)

“for each”: This idiom expresses a simple iteration over a
set S of facts. As this is a fundamental operation in any rule
language, Jess performs this iteration implicitly, without

1 This correspondence reflects the fact that the design of a

programming language itself involves a choice among a range of
possible programming idioms, and the idioms chosen will
thereafter be trivial to use within that language, by design.

requiring any language keyword. Hence, it suffices to just
specify the set itself, using one pattern (S ?s), where ?s
denotes a Jess variable.

• for each s in set S that satisfies property P
(defrule R2 (S ?s) (P ?s) => …)

To restrict this iteration to a subset of S that satisfies an
additional property P, we simply add a second pattern for P.

• if any s in set S satisfies property Q
(defrule R3 (S ?s) (exists (Q ?s)) => …)

“if any”: This idiom differs from “for each” in that we
don’t need to visit each element that satisfies the property.
Instead, we halt the iteration as soon as any one succeeds.
This idiom maps to the Jess keyword exists.

• if all s in set S satisfy property Q
(defrule R4
 ; Let all other rules go first before checking the ‘not’
 (declare (salience -1))
 ; Guard (to ensure volatility, and to exclude empty set)
 (and (S ?s1) (Q ?s1))
 ; All
 (not (and
 (S ?s2) (~Q ?s2) ; ~Q is the negation of property Q
))
 => …)

“if all”: This idiom is also an iteration over a set. However,
by its nature, it must visit every element of the set. Jess
does not implicitly handle this operation. We apply De
Morgan’s law to convert the all idiom to not any, which Jess
does provide as primitives. Hence, this idiom expands to a
block structure, using the Jess not and and keywords.

Jess’s not keyword introduces three complications.
1. Volatility. The pattern immediately preceding a not

must be volatile: the rule will be re-checked only when
that pattern changes. We handle this by adding a guard
clause before the all block.

2. Empty set. not and gives a false positive for an empty
set. The guard clause also prevents this.

3. Temporal dependency. not assumes that all other rules
have reached a quiescent state (i.e. are no longer
changing any facts). This requires temporal ordering
among rules, which maps to a Jess salience declaration.

4.3 Simplified Syntax with Idioms as Keywords
We have defined a simplified rule syntax, in which the
common idioms appear as keywords. This supports a non-
programmer who thinks at the level of the natural-language
idioms, by hiding their implementation details. As this rule
format is essentially text-based, any text editor would be
sufficient in theory. For added convenience, we have
developed a graphical front-end using Java Swing, shown in
Figure 3, which allows selection of the idiom keywords
from menus.

Figure 3. Rule editor interface with conversion to Jess

Rules written in this simplified syntax are mapped into

Jess rule fragments, using a standard recursive descent
parsing approach. The fragments are then merged into
complete Jess rules, and are immediately evaluated, which
updates Jess’s run-time environment.

5 Pedagogical Knowledge Editing in ITS
Development
We are integrating the rule editing capability into a

distributed, persistent ITS development framework. In this
framework, the ontologies serve as repositories for many
learning domains, tutoring strategies, and bodies of
pedagogical knowledge, accumulated over time and across
many individual teachers and courses. Rule editing is then a
subtask of the more general operation of pedagogical
knowledge editing. Each individual teacher composes her
own tutoring strategy model from the tutoring ontology and
a library of previously-developed inference rules, which
exploits knowledge reuse. A teacher can customize her
model by defining her own pedagogical knowledge as new
inference rules. We support local extensions to a particular
model, as well as extension of the ontologies themselves by
using an ontology editor.

The ontologies and tutoring strategy models are
accessible over the web, using standard web services. For
distributed rule editing, we are exploring the further
enhancement of the rule editing tool as an embedded Java
applet, or a separate web-enabled application.

6 Rule Editing for Contents Presentation
Design

We are developing an intelligent learning environment
targeting heritage education, using ontology-based learner
modeling to customize and refine the learning interaction
[Kim et al., 2004]. To support this, we have developed a
learner ontology based on [Chen & Mizoguchi, 1999]’s
approach. A learner is modeled with profile information
containing personal data, comprehensive assessment of
learner’s capabilities, dynamic assessment of learner’s

current mood and knowledge, low-level activity records for
every learner action and system activity, and processed data
obtained from the activity records. In addition, our learner
ontology incorporates multiple sets of learner preferences,
including Myers-Briggs Type Indicators, Felder &
Silverman’s Index of Learning Styles [Felder, 2002], and
Chen & Mizoguchi’s learning preferences. Learner models
are inferred from the learners’ records of interaction with
the system, using data mining.
 Felder & Silverman’s Index of Learning Styles
classifies a learner along 4 axes, with two extremes per axis:
(S)ensory–I(n)tuitive, (V)isual–(A)uditory, A(c)tive–
(R)eflective, and Se(q)uential–(G)lobal. We abbreviate
each value to 1 letter, denoted by the parentheses. Each of
the 16 combinations defines a set of learning preferences,
which determines the best way in which learning contents
should be presented to those students.
 For a teacher, this becomes a task of contents
presentation design. Specific learning content objects are
annotated with properties defining the learning styles in
which they are to be used. Using the rule editor, the teacher
then defines the contents presentation knowledge as
inference rules, which take a student’s Felder & Silverman
learning style as input, and selectively enables and disables
learning content objects, and also adjusts their sizes, colors,
positions, etc. Examples of the customized contents
presentation for two combinations NARG and SVCQ are
shown in Figure 4. A future extension of this work is to
deduce these inference rules automatically from visual
exemplars of the learning contents presentation, which
further simplifies the teacher’s task.

7 Conclusion
Inference rules are a significant form of knowledge
representation for pedagogical knowledge within an
ontology-based ITS, which accurately records a teacher’s
intent, while supporting automatic execution. We have
identified a desideratum to make pedagogical rule editing
accessible to non-technical users. To support this, we have
identified common rule idioms at the natural language level,
and developed a mapping technique from these idioms into
complete Jess rules. This supports a simplified rule syntax
in which the idioms appear as keywords, hiding the
complexities of their implementation.

References
[Chen & Mizoguchi, 1999] Chen, W., and Mizoguchi, R.

Communication Content Ontology for Learner Model
Agent in Multi-agent Architecture. Proc. 7th Int’l. Conf.
on Computers in Education, pp. 95–102, Chiba, Japan.

[Felder, 2002] Felder, R. Learning and teaching styles in
engineering education. Engineering Education, 78(7),
pp. 674–681.

[Friedmann-Hill, 2003] Friedmann-Hill, E. Jess in Action.
Manning, Greenwich.

[Gruber, 1993] Gruber, T. R. Toward principles for the
design of ontologies used for knowledge sharing. In N.
Guarino and R. Poli, (Eds.), Int’l. Workshop on Formal
Ontology, Padova, Italy, 1993. Revised version also
published in Int’l. Journal of Human-Computer Studies,
43(5-6), pp. 907–928, Nov./Dec. 1995.

[Horrocks et al., 2004] Horrocks, I., Patel-Schneider, P. F.,
Boley, H., Tabet, S., Grosof, B., and Dean, M. SWRL:
A Semantic Web Rule Language Combining OWL and
RuleML. W3C Member Submission, www.w3.org/
Submission/2004/SUBM-SWRL-20040521/, May 2004.

[Hubbard et al., 1996] Hubbard, C., Mengshoel, O. J.,
Moon, C., and Kim, Y. S. Multimedia Instructional
Software for Visual Reasoning: Visual Reasoning Tutor
(VRT). Proc. Int’l. Conf. on Multimedia Computing and
System, pp. 261–268, Hiroshima, Japan, Jun. 1996.

[Kim et al., 2004] Kim, Y. S., Kim, S. A., Wang, E., Park,
B. J., Jeon, K. J., and Cho, Y. J. An Intelligent Learning
Environment for Heritage Alive. To appear in Proc.
Conf. of KSPE (special session on intelligent HCI),
Busan, Korea, Oct. 2004 [in Korean].

[Protégé, 2004] www-protege.stanford.edu.

Figure 4. Contents Presentation Design

using Felder & Silverman’s Index of Learning Styles

http://www.w3.org/ Submission/2004/SUBM-SWRL-20040521/
http://www.w3.org/ Submission/2004/SUBM-SWRL-20040521/
http://www-protege.stanford.edu/

